Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Ann Clin Transl Neurol ; 11(4): 946-957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38316966

RESUMO

OBJECTIVE: Amyotrophic lateral sclerosis (ALS) is a devastating, incurable neurodegenerative disease. A subset of ALS patients manifests with early-onset and complex clinical phenotypes. We aimed to elucidate the genetic basis of these cases to enhance our understanding of disease etiology and facilitate the development of targeted therapies. METHODS: Our research commenced with an in-depth genetic and biochemical investigation of two specific families, each with a member diagnosed with early-onset ALS (onset age of <40 years). This involved whole-exome sequencing, trio analysis, protein structure analysis, and sphingolipid measurements. Subsequently, we expanded our analysis to 62 probands with early-onset ALS and further included 440 patients with adult-onset ALS and 1163 healthy controls to assess the prevalence of identified genetic variants. RESULTS: We identified heterozygous variants in the serine palmitoyltransferase long chain base subunit 2 (SPTLC2) gene in patients with early-onset ALS. These variants, located in a region closely adjacent to ORMDL3, bear similarities to SPTLC1 variants previously implicated in early-onset ALS. Patients with ALS carrying these SPTLC2 variants displayed elevated plasma ceramide levels, indicative of increased serine palmitoyltransferase (SPT) activity leading to sphingolipid overproduction. INTERPRETATION: Our study revealed novel SPTLC2 variants in patients with early-onset ALS exhibiting frontotemporal dementia. The combination of genetic evidence and the observed elevation in plasma ceramide levels establishes a crucial link between dysregulated sphingolipid metabolism and ALS pathogenesis. These findings expand our understanding of ALS's genetic diversity and highlight the distinct roles of gene defects within SPT subunits in its development.


Assuntos
Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doenças Neurodegenerativas , Adulto , Humanos , Demência Frontotemporal/genética , Esclerose Amiotrófica Lateral/genética , Serina C-Palmitoiltransferase/genética , Esfingolipídeos , Ceramidas
3.
Nat Commun ; 14(1): 5530, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709751

RESUMO

Markedly expanded tandem repeats (TRs) have been correlated with ~60 diseases. TR diversity has been considered a clue toward understanding missing heritability. However, haplotype-resolved long TRs remain mostly hidden or blacked out because their complex structures (TRs composed of various units and minisatellites containing >10-bp units) make them difficult to determine accurately with existing methods. Here, using a high-precision algorithm to determine complex TR structures from long, accurate reads of PacBio HiFi, an investigation of 270 Japanese control samples yields several genome-wide findings. Approximately 322,000 TRs are difficult to impute from the surrounding single-nucleotide variants. Greater genetic divergence of TR loci is significantly correlated with more events of younger replication slippage. Complex TRs are more abundant than single-unit TRs, and a tendency for complex TRs to consist of <10-bp units and single-unit TRs to be minisatellites is statistically significant at loci with ≥500-bp TRs. Of note, 8909 loci with extended TRs (>100b longer than the mode) contain several known disease-associated TRs and are considered candidates for association with disorders. Overall, complex TRs and minisatellites are found to be abundant and diverse, even in genetically small Japanese populations, yielding insights into the landscape of long TRs.


Assuntos
Genoma Humano , Sequências de Repetição em Tandem , Humanos , Genoma Humano/genética , Repetições Minissatélites , Algoritmos , Deriva Genética
4.
Acta Neuropathol Commun ; 11(1): 156, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752594

RESUMO

Although recent molecular analyses revealed that sporadic meningiomas have various genetic, epigenetic, and transcriptomic profiles, meningioma in patients with neurofibromatosis type 2 (NF2) have not been fully elucidated. This study investigated meningiomas' clinical, histological, and molecular characteristics in NF2 patients. A long-term retrospective follow-up (13.5 ± 5.5 years) study involving total 159 meningiomas in 37 patients with NF2 was performed. Their characteristics were assessed using immunohistochemistry (IHC), bulk-RNA sequencing, and copy number analysis. All variables of meningiomas in patients with NF2 were compared with those in 189 sporadic NF2-altered meningiomas in 189 patients. Most meningiomas in NF2 patients were stable, and the mean annual growth rate was 1.0 ± 1.8 cm3/year. Twenty-eight meningiomas (17.6%) in 25 patients (43.1%) were resected during the follow-up period. WHO grade I meningiomas in patients with NF2 were more frequent than in sporadic NF2-altered meningiomas (92.9% vs. 80.9%). Transcriptomic analysis for patients with NF2/sporadic NF2-altered WHO grade I meningiomas (n = 14 vs. 15, respectively) showed that tumours in NF2 patients still had a higher immune response and immune cell infiltration than sporadic NF2-altered meningiomas. Furthermore, RNA-seq/IHC-derived immunophenotyping corroborated this enhanced immune response by identifying myeloid cell infiltration, particularly in macrophages. Clinical, histological, and transcriptomic analyses of meningiomas in patients with NF2 demonstrated that meningiomas in NF2 patients showed less aggressive behaviour than sporadic NF2-altered meningiomas and elicited a marked immune response by identifying myeloid cell infiltration, particularly of macrophages.


Assuntos
Neoplasias Meníngeas , Meningioma , Neurofibromatose 2 , Humanos , Macrófagos , Neoplasias Meníngeas/genética , Meningioma/genética , Neurofibromatose 2/complicações , Neurofibromatose 2/genética , Estudos Retrospectivos
5.
BMC Genomics ; 24(1): 472, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605229

RESUMO

BACKGROUND: The nutritional status during early life can have enduring effects on an animal's metabolism, although the mechanisms underlying these long-term effects are still unclear. Epigenetic modifications are considered a prime candidate mechanism for encoding early-life nutritional memories during this critical developmental period. However, the extent to which these epigenetic changes occur and persist over time remains uncertain, in part due to challenges associated with directly stimulating the fetus with specific nutrients in viviparous mammalian systems. RESULTS: In this study, we used medaka as an oviparous vertebrate model to establish an early-life high-fat diet (HFD) model. Larvae were fed with HFD from the hatching stages (one week after fertilization) for six weeks, followed by normal chow (NC) for eight weeks until the adult stage. We examined the changes in the transcriptomic and epigenetic state of the liver over this period. We found that HFD induces simple liver steatosis, accompanied by drastic changes in the hepatic transcriptome, chromatin accessibility, and histone modifications, especially in metabolic genes. These changes were largely reversed after the long-term NC, demonstrating the high plasticity of the epigenetic state in hepatocytes. However, we found a certain number of genomic loci showing non-reversible epigenetic changes, especially around genes related to cell signaling, liver fibrosis, and hepatocellular carcinoma, implying persistent changes in the cellular state of the liver triggered by early-life HFD feeding. CONCLUSION: In summary, our data show that early-life HFD feeding triggers both reversible and persistent epigenetic changes in medaka hepatocytes. Our data provide novel insights into the epigenetic mechanism of nutritional programming and a comprehensive atlas of the long-term epigenetic state in an early-life HFD model of non-mammalian vertebrates.


Assuntos
Epigênese Genética , Animais , Oryzias/genética , Oryzias/crescimento & desenvolvimento , Dieta Hiperlipídica , Regulação da Expressão Gênica no Desenvolvimento , Loci Gênicos
6.
medRxiv ; 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37425910

RESUMO

To elucidate the molecular basis of multiple system atrophy (MSA), a neurodegenerative disease, we conducted a genome-wide association study (GWAS) in a Japanese MSA case/control series followed by replication studies in Japanese, Korean, Chinese, European and North American samples. In the GWAS stage rs2303744 on chromosome 19 showed a suggestive association ( P = 6.5 × 10 -7 ) that was replicated in additional Japanese samples ( P = 2.9 × 10 -6 . OR = 1.58; 95% confidence interval, 1.30 to 1.91), and then confirmed as highly significant in a meta-analysis of East Asian population data ( P = 5.0 × 10 -15 . Odds ratio= 1.49; 95% CI 1.35 to 1.72). The association of rs2303744 with MSA remained significant in combined European/North American samples ( P =0.023. Odds ratio=1.14; 95% CI 1.02 to 1.28) despite allele frequencies being quite different between these populations. rs2303744 leads to an amino acid substitution in PLA2G4C that encodes the cPLA2γ lysophospholipase/transacylase. The cPLA2γ-Ile143 isoform encoded by the MSA risk allele has significantly decreased transacylase activity compared with the alternate cPLA2γ-Val143 isoform that may perturb membrane phospholipids and α-synuclein biology.

7.
Cell Rep ; 42(8): 112884, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516964

RESUMO

NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.


Assuntos
Leucemia , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Cromatina , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Corpos Nucleares
9.
Bioinformatics ; 39(7)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354526

RESUMO

MOTIVATION: Diploid assembly, or determining sequences of homologous chromosomes separately, is essential to elucidate genetic differences between haplotypes. One approach is to call and phase single nucleotide variants (SNVs) on a reference sequence. However, this approach becomes unstable on large segmental duplications (SDs) or structural variations (SVs) because the alignments of reads deriving from these regions tend to be unreliable. Another approach is to use highly accurate PacBio HiFi reads to output diploid assembly directly. Nonetheless, HiFi reads cannot phase homozygous regions longer than their length and require oxford nanopore technology (ONT) reads or Hi-C to produce a fully phased assembly. Is a single long-read sequencing technology sufficient to create an accurate diploid assembly? RESULTS: Here, we present JTK, a megabase-scale diploid genome assembler. It first randomly samples kilobase-scale sequences (called 'chunks') from the long reads, phases variants found on them, and produces two haplotypes. The novel idea of JTK is to utilize chunks to capture SNVs and SVs simultaneously. From 60-fold ONT reads on the HG002 and a Japanese sample, it fully assembled two haplotypes with approximately 99.9% accuracy on the histocompatibility complex (MHC) and the leukocyte receptor complex (LRC) regions, which was impossible by the reference-based approach. In addition, in the LRC region on a Japanese sample, JTK output an assembly of better contiguity than those built from high-coverage HiFi+Hi-C. In the coming age of pan-genomics, JTK would complement the reference-based phasing method to assemble the difficult-to-assemble but medically important regions. AVAILABILITY AND IMPLEMENTATION: JTK is available at https://github.com/ban-m/jtk, and the datasets are available at https://doi.org/10.5281/zenodo.7790310 or JGAS000580 in DDBJ.


Assuntos
Diploide , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Genoma , Genômica , Haplótipos
10.
J Peripher Nerv Syst ; 28(3): 518-521, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37249095

RESUMO

BACKGROUND AND AIMS: Pathogenic variants of HSPB1, the gene encoding the small heat shock protein 27, have been reported to cause autosomal dominant distal hereditary motor neuropathy (dHMN) type II and autosomal dominant Charcot-Marie-Tooth (CMT) disease with minimal sensory involvement (CMT2F). This study aimed to describe the clinical features of patients in a family with late-onset dHMN carrying the Pro39Leu variant of HSPB1. METHODS: Whole-exome sequence analysis identified a heterozygous pathogenic variant (Pro39Leu) of HSPB1 in the proband. The presence of the HSPB1 Pro39Leu variant in two affected individuals was confirmed using direct nucleotide sequence analysis. RESULTS: Both patients exhibited distal muscle weakness with lower extremity predominance and no obvious sensory deficits, leading to a clinical diagnosis of late-onset dHMN. Nerve conduction studies (NCSs) revealed a subclinical complication of sensory disturbance in one of the patients. The clinical and electrophysiological findings of patients with the HSPB1 Pro39Leu variant in this study and previous reports are summarized. INTERPRETATION: This study suggests that the clinical spectrum of patients carrying HSPB1 Pro39Leu variants, especially the disease onset, might be broader than expected, and HSPB1 variants should be considered in patients diagnosed with late-onset dHMN. Furthermore, patients with dHMN may have concomitant sensory deficits that should be evaluated using NCSs.


Assuntos
Doença de Charcot-Marie-Tooth , Neuropatia Hereditária Motora e Sensorial , Humanos , Mutação , Doença de Charcot-Marie-Tooth/genética , Extremidade Inferior , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética
11.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37039842

RESUMO

MOTIVATION: Over the past 30 years, extended tandem repeats (TRs) have been correlated with ∼60 diseases with high odds ratios, and most known TRs consist of single repeat units. However, in the last few years, mosaic TRs composed of different units have been found to be associated with several brain disorders by long-read sequencing techniques. Mosaic TRs are difficult-to-characterize sequence configurations that are usually confirmed by manual inspection. Widely used tools are not designed to solve the mosaic TR problem and often fail to properly decompose mosaic TRs. RESULTS: We propose an efficient algorithm that can decompose mosaic TRs in the input string with high sensitivity. Using synthetic benchmark data, we demonstrate that our program named uTR outperforms TRF and RepeatMasker in terms of prediction accuracy, this is especially true when mosaic TRs are more complex, and uTR is faster than TRF and RepeatMasker in most cases. AVAILABILITY AND IMPLEMENTATION: The software program uTR that implements the proposed algorithm is available at https://github.com/morisUtokyo/uTR.


Assuntos
Software , Sequências de Repetição em Tandem , Análise de Sequência de DNA/métodos , Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala
12.
Intern Med ; 62(19): 2883-2887, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36792195

RESUMO

Desminopathy is a cardiac and skeletal myopathy caused by disease-causing variants in the desmin (DES) gene and represents a subgroup of myofibrillar myopathies, where cytoplasmic desmin-postive immunoreactivity is the pathological hallmark. We herein report a 28-year-old Japanese man who was initially diagnosed with sporadic hypertrophic cardiomyopathy with atrioventricular block at 9 years old and developed weakness in the soft palate and extremities. The myocardial tissue dissected during implantation of the ventricular-assisted device showed a dilated phase of hypertrophic cardiomyopathy and intracellular accumulation of proteinase K-resistant desmin aggregates. Genetic testing confirmed a de novo mutation of DES, which has already been linked to desminopathy. As the molecular diagnosis of desminopathy is challenging, particularly if patients show predominantly cardiac signs and a routine skeletal muscle biopsy is unavailable, these characteristic pathological findings of endomyocardial proteinase K-resistant desmin aggregates might aid in clinical practice.


Assuntos
Cardiomiopatias , Cardiomiopatia Hipertrófica , Miopatias Congênitas Estruturais , Masculino , Humanos , Criança , Adulto , Desmina/genética , Desmina/metabolismo , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Cardiomiopatias/patologia , Endopeptidase K/genética , Mutação/genética
13.
Angiogenesis ; 26(1): 37-52, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35902510

RESUMO

Orbital cavernous venous malformation (OCVM) is a sporadic vascular anomaly of uncertain etiology characterized by abnormally dilated vascular channels. Here, we identify a somatic missense mutation, c.121G > T (p.Gly41Cys) in GJA4, which encodes a transmembrane protein that is a component of gap junctions and hemichannels in the vascular system, in OCVM tissues from 25/26 (96.2%) individuals with OCVM. GJA4 expression was detected in OCVM tissue including endothelial cells and the stroma, through immunohistochemistry. Within OCVM tissue, the mutation allele frequency was higher in endothelial cell-enriched fractions obtained using magnetic-activated cell sorting. Whole-cell voltage clamp analysis in Xenopus oocytes revealed that GJA4 c.121G > T (p.Gly41Cys) is a gain-of-function mutation that leads to the formation of a hyperactive hemichannel. Overexpression of the mutant protein in human umbilical vein endothelial cells led to a loss of cellular integrity, which was rescued by carbenoxolone, a non-specific gap junction/hemichannel inhibitor. Our data suggest that GJA4 c.121G > T (p.Gly41Cys) is a potential driver gene mutation for OCVM. We propose that hyperactive hemichannel plays a role in the development of this vascular phenotype.


Assuntos
Mutação com Ganho de Função , Malformações Vasculares , Humanos , Células Endoteliais , Junções Comunicantes/genética , Mutação , Veias , Malformações Vasculares/metabolismo
14.
Cancer Sci ; 114(4): 1672-1685, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36511816

RESUMO

The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.


Assuntos
Carcinoma de Células Escamosas , Genoma , Humanos , Cromatina/genética , Fatores de Transcrição/genética , Epigênese Genética , Carcinoma de Células Escamosas/genética , Fator 1-beta Nuclear de Hepatócito/genética , Fator 1-beta Nuclear de Hepatócito/metabolismo
15.
Sci Rep ; 12(1): 9543, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681071

RESUMO

Regardless of treatment, the clinical progression of neurofibromatosis type 2 (NF2), particularly in terms of hearing, swallowing, and gait, tend to worsen throughout the patients' lives. We performed a retrospective analysis of functional outcomes in Japanese NF2 patients to predict their functional prognosis. We analyzed genotype-phenotype correlation based on genetic data from a cohort of 57 patients with a mean follow-up of 14.5 ± 6.0 years. Their functional outcomes, including hearing, swallowing, and ambulation, were reviewed. Performing a targeted deep sequencing, germline NF2 mutations were identified in 28 patients (49.1%), and mosaic NF2 was identified in 20 patients (20, 35.0%). The functional preservation period and outcome differed significantly depending on clinical/genetic factors. Among these factors, "Truncating", "Mosaic", and "Age of symptom onset ≥ 25" had the most significant effects on functional disability. By applying a combination of an NF2 mutation type/location, and age of symptom onset, we classified different degrees of functional preservation and progression, schwannoma growth rate and total interventions per year per patient. The prediction of detailed functional outcomes in NF2 patients can plan better strategies for life-long disease management and social integration.


Assuntos
Neurofibromatose 2 , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neurofibromatose 2/genética , Prognóstico , Estudos Retrospectivos
16.
BMC Genomics ; 23(1): 249, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361121

RESUMO

BACKGROUND: Single molecule measurements of DNA polymerization kinetics provide a sensitive means to detect both secondary structures in DNA and deviations from primary chemical structure as a result of modified bases. In one approach to such analysis, deviations can be inferred by monitoring the behavior of DNA polymerase using single-molecule, real-time sequencing with zero-mode waveguide. This approach uses a Single Molecule Real Time (SMRT)-sequencing measurement of time between fluorescence pulse signals from consecutive nucleosides incorporated during DNA replication, called the interpulse duration (IPD). RESULTS: In this paper we present an analysis of loci with high IPDs in two genomes, a bacterial genome (E. coli) and a eukaryotic genome (C. elegans). To distinguish the potential effects of DNA modification on DNA polymerization speed, we paired an analysis of native genomic DNA with whole-genome amplified (WGA) material in which DNA modifications were effectively removed. Adenine modification sites for E. coli are known and we observed the expected IPD shifts at these sites in the native but not WGA samples. For C. elegans, such differences were not observed. Instead, we found a number of novel sequence contexts where IPDs were raised relative to the average IPDs for each of the four nucleotides, but for which the raised IPD was present in both native and WGA samples. CONCLUSION: The latter results argue strongly against DNA modification as the underlying driver for high IPD segments for C. elegans, and provide a framework for separating effects of DNA modification from context-dependent DNA polymerase kinetic patterns inherent in underlying DNA sequence for a complex eukaryotic genome.


Assuntos
Caenorhabditis elegans , Escherichia coli , Animais , Caenorhabditis elegans/genética , DNA/química , DNA/genética , Escherichia coli/genética , Polimerização , Análise de Sequência de DNA/métodos
17.
J Neurol ; 269(8): 4129-4140, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35235001

RESUMO

Mitochondrial disorders are a group of clinically and genetically heterogeneous multisystem disorders and peripheral neuropathy is frequently described in the context of mutations in mitochondrial-related nuclear genes. This study aimed to identify the causative mutations in mitochondrial-related nuclear genes in suspected hereditary peripheral neuropathy patients. We enrolled a large Japanese cohort of clinically suspected hereditary peripheral neuropathy patients who were mutation negative in the prescreening of the known Charcot-Marie-Tooth disease-causing genes. We performed whole-exome sequencing on 247 patients with autosomal recessive or sporadic inheritance for further analysis of 167 mitochondrial-related nuclear genes. We detected novel bi-allelic likely pathogenic/pathogenic variants in four patients, from four mitochondrial-related nuclear genes: pyruvate dehydrogenase beta-polypeptide (PDHB), mitochondrial poly(A) polymerase (MTPAP), hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase, beta subunit (HADHB), and succinate-CoA ligase ADP-forming beta subunit (SUCLA2). All these patients showed sensory and motor axonal polyneuropathy, combined with central nervous system or multisystem involvements. The pathological analysis of skeletal muscles revealed mild neurogenic changes without significant mitochondrial abnormalities. Targeted screening of mitochondria-related nuclear genes should be considered for patients with complex hereditary axonal polyneuropathy, accompanied by central nervous system dysfunctions, or with unexplainable multisystem disorders.


Assuntos
Doença de Charcot-Marie-Tooth , Doenças Mitocondriais , Doença de Charcot-Marie-Tooth/genética , Coenzima A/genética , DNA Mitocondrial , Humanos , Doenças Mitocondriais/genética , Mutação/genética , Oxirredutases/genética
18.
Gastroenterology ; 162(4): 1272-1287.e16, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34953915

RESUMO

BACKGROUND & AIMS: Chromatin architecture governs cell lineages by regulating the specific gene expression; however, its role in the diversity of cancer development remains unknown. Among pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) and intraductal papillary mucinous neoplasms (IPMN) with an associated invasive carcinoma (IPMNinv) arise from 2 distinct precursors, and their fundamental differences remain obscure. Here, we aimed to assess the difference of chromatin architecture regulating the transcriptional signatures or biological features in pancreatic cancers. METHODS: We established 28 human organoids from distinct subtypes of pancreatic tumors, including IPMN, IPMNinv, and PDAC. We performed exome sequencing (seq), RNA-seq, assay for transposase-accessible chromatin-seq, chromatin immunoprecipitation-seq, high-throughput chromosome conformation capture, and phenotypic analyses with short hairpin RNA or clustered regularly interspaced short palindromic repeats interference. RESULTS: Established organoids successfully reproduced the histology of primary tumors. IPMN and IPMNinv organoids harbored GNAS, RNF43, or KLF4 mutations and showed the distinct expression profiles compared with PDAC. Chromatin accessibility profiles revealed the gain of stomach-specific open regions in IPMN and the pattern of diverse gastrointestinal tissues in IPMNinv. In contrast, PDAC presented an impressive loss of accessible regions compared with normal pancreatic ducts. Transcription factor footprint analysis and functional assays identified that MNX1 and HNF1B were biologically indispensable for IPMN lineages. The upregulation of MNX1 was specifically marked in the human IPMN lineage tissues. The MNX1-HNF1B axis governed a set of genes, including MYC, SOX9, and OLFM4, which are known to be essential for gastrointestinal stem cells. High-throughput chromosome conformation capture analysis suggested the HNF1B target genes to be 3-dimensionally connected in the genome of IPMNinv. CONCLUSIONS: Our organoid analyses identified the MNX1-HNF1B axis to be biologically significant in IPMN lineages.


Assuntos
Adenocarcinoma Mucinoso , Carcinoma Ductal Pancreático , Fator 1-beta Nuclear de Hepatócito , Proteínas de Homeodomínio , Neoplasias Intraductais Pancreáticas , Fatores de Transcrição , Adenocarcinoma Mucinoso/genética , Carcinoma Ductal Pancreático/patologia , Cromatina , Fator 1-beta Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Intraductais Pancreáticas/genética , Fatores de Transcrição/genética , Neoplasias Pancreáticas
19.
DNA Res ; 28(6)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609504

RESUMO

The complete sequencing of human centromeres, which are filled with highly repetitive elements, has long been challenging. In human centromeres, α-satellite monomers of about 171 bp in length are the basic repeating units, but α-satellite monomers constitute the higher-order repeat (HOR) units, and thousands of copies of highly homologous HOR units form large arrays, which have hampered sequence assembly of human centromeres. Because most HOR unit occurrences are covered by long reads of about 10 kb, the recent availability of much longer reads is expected to enable observation of individual HOR occurrences in terms of their single-nucleotide or structural variants. The time has come to examine the complete sequence of human centromeres.


Assuntos
Centrômero , DNA Satélite , Centrômero/genética , Humanos , Sequências Repetitivas de Ácido Nucleico
20.
Genome Res ; 31(6): 968-980, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34006570

RESUMO

Chromatin looping plays an important role in genome regulation. However, because ChIP-seq and loop-resolution Hi-C (DNA-DNA proximity ligation) are extremely challenging in mammalian early embryos, the developmental stage at which cohesin-mediated loops form remains unknown. Here, we study early development in medaka (the Japanese killifish, Oryzias latipes) at 12 time points before, during, and after gastrulation (the onset of cell differentiation) and characterize transcription, protein binding, and genome architecture. We find that gastrulation is associated with drastic changes in genome architecture, including the formation of the first loops between sites bound by the insulator protein CTCF and a large increase in the size of contact domains. In contrast, the binding of the CTCF is fixed throughout embryogenesis. Loops form long after genome-wide transcriptional activation, and long after domain formation seen in mouse embryos. These results suggest that, although loops may play a role in differentiation, they are not required for zygotic transcription. When we repeated our experiments in zebrafish, loops did not emerge until gastrulation, that is, well after zygotic genome activation. We observe that loop positions are highly conserved in synteny blocks of medaka and zebrafish, indicating that the 3D genome architecture has been maintained for >110-200 million years of evolution.


Assuntos
Oryzias , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/genética , Gastrulação/genética , Camundongos , Oryzias/genética , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...